
MATH 340: GRAPH THEORY REVIEW.

Basic notions. Review of MATH 240.

Definition of a graph. A graph G is an ordered pair (V (G), E(G)), where V (G) is a set
of vertices, E(G) is a set of some pairs of vertices called edges.1 We will write uv, instead of
{u, v}, to denote the edge consisting of a pair of vertices u and v for brevity. For example, if

V (G) = {a, b, c, d},
E(G) = {ab, ac, bc, cd},

then G is a graph with four vertices and four edges.
The vertices u and v are called the ends of the edge e = uv, and the edge e is incident to

its ends. Two vertices u and v are adjacent or neighbors if uv ∈ E(G).

Standard graph classes. A complete graph on n vertices is denoted Kn is a simple graph
in which every two vertices are adjacent.

A path on n vertices, denoted Pn, is a graph such that:

V (Pn) = {v1, v2, . . . , vn}
E(Pn) = {v1v2, v2v3, . . . , vn−1vn}.

The vertices v1 and vn are the ends of the path Pn.
A cycle on n ≥ 3 vertices, denoted Cn, is a graph such that:

V (Cn) = {v1, v2, . . . , vn}
E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}.

Degrees. The degree of a vertex v in a graph G is the number of its neighbors. It is denoted
by degG(v), or usually simply deg(v) when the graph G is understood from context.

Theorem 1. For any graph G, we have:∑
v∈V (G)

deg(v) = 2|E(G)|

Subgraphs. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
We write H ⊆ G to denote that H is a subgraph of G.

A path(or cycle) of G is a subgraph of G which is a path (or resp. cycle).
A subgraph G \ e obtained from G by deleting the edge e ∈ E(G) is defined by V (G \ e) =

V (G), E(G \ e) = E(G) − {e}. A subgraph G \ v of G obtained from G by deleting the
vertex v is defined by V (G \ v) = V (G) − {v}, and E(G \ v) consists of all the edges of G
not incident to v.

Isomorphism. Graphs H and G are isomorphic if there exists a bijection φ : V (H)→ V (G)
(called an isomorphism) such that uv ∈ E(H) if and only if φ(u)φ(v) ∈ E(G). We frequently
treat isomorphic graphs as being the same.

1Unlike other definitions this one does not allow for loops and parallel edges.
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Connectivity. A walk from v0 to vk in a graph G is a non-empty alternating sequence
v0, e0, v1, e1, . . . , ek−1, vk of vertices and edges in G, such that ei = vivi+1 for i = 0, . . . , k− 1.
If v0 = vk, then the walk is said to be closed.

A graph G is connected if and only if for all u, v ∈ V (G), there exists a walk from u to v.

Lemma 2. If there is a walk with ends u, v in G, then there is a path in G with the same
ends.

A connected component of a graph G is a maximal connected subgraph.

Lemma 3. In a graph G, every vertex is in a unique connected component.

Let comp(G) denote the number of components of a graph G.

Trees and Forests. A forest is a graph with no cycles. A tree is a connected forest.2

Theorem 4. If G is a (non-null) forest, then

comp(G) = |V (G)| − |E(G)|.

In particular, if G is a tree then

|V (T )| = |E(T )|+ 1

A vertex v in a tree with deg(v) = 1 is called a leaf.

Lemma 5. Let T be a tree with |V (T )| ≥ 2. Then, T has at least twp leaves, and if T has
exactly two leaves, then T is a path.

Bipartite Graphs. A bipartition of a graph G is a pair of subsets (A,B) of V (G) so that
A∩B = ∅, A∪B = V (G), and every edge of G has one end in A and another in B. A graph
is bipartite if it admits a bipartition.

Theorem 6. For every graph G, the following statements are equivalent:

(1) G is bipartite,
(2) G has no closed walk with odd number of edges,
(3) G has no odd cycle.

Vertex coloring. Let G be a graph, S a set of size k. The function ϕ : V (G)→ S is called
a (proper) k-coloring if for all e ∈ E(G) with ends u and v, ϕ(u) 6= ϕ(v). Elements of S are
called colors. The set of all vertices of the same color is called a color class.

The chromatic number χ(G) is the minimum k such that G admits a k-coloring.
Let ∆(G) denote the maximum degree of a vertex in a graph G.

Theorem 7. χ(G) ≤ ∆(G) + 1 for every graph G.

2If one is being pedantic, then one should note that the null graph with no vertices and no edges is
considered to be a forest, but not a tree.
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Matchings

Stable Matchings. Given a group of n men and n women, a matching M which pairs each
man with exactly one woman is stable if there does not exist a pair a man b and a woman g
not paired by M such that b and g prefer each other to their current partners.

Boy proposal algorithm: At each step, each man proposes to the woman he likes
most, and which has not rejected him yet. Each woman rejects all men who propose
to her, except for the one among them she likes the most. To this one, she says
maybe. If no woman receives > 1 proposal, every woman marries the man proposing
to her, thus creating a matching.

Theorem 8. The boy proposal algorithm produces a stable matching.

Matchings in bipartite graphs. A matching M ⊂ E(G) in a graph G is a collection of
edges so that every vertex of G is incident to at most one edge of M . A matching M is
perfect if every vertex of G is incident to exactly one edge of G.

Theorem 9 (Hall). Let G be bipartite, with bipartition (A,B). Then, the following are
equivalent:

(1) There exists a matching in G covering A.
(2) For every S ⊂ A, vertices in S have at least |S| neighbours in B, that is |N(S)| ≥ |S|.

Corollary 10. Let G be bipartite, with every vertex of the same degree d > 0. Then, G has
a perfect matching.

Let ν(G), the matching number of G, denote the maximum size of a matching in G.
A subset X ⊂ V (G) is a vertex cover of G if every edge of G has an end in X. Let τ(G),

the vertex cover number of G, denote the minimum size of a vertex cover in G.

Theorem 11 (König). If G is bipartite, then ν(G) = τ(G).

Edge coloring. A k-edge colouring of a graph G is a map ϕ : E(G) → S with |S| = k, so
that ϕ(e) 6= ϕ(f) if e and f share an end.

The minimum k such that G admits a k-edge colouring is called the edge-chromatic number
of G and is denoted χ′(G).

Theorem 12. ∆(G) ≤ χ′(G) ≤ 2∆(G)− 1.

Theorem 13 (König). If G is bipartite, then χ′(G) = ∆(G).

Planar graphs

A drawing of a graph G in the plane represents vertices as points in the plane, and edges as
curves which do not intersect themselves or each other, and have ends at points corresponding
to the ends of edges. Points in the plane not used in the drawing are divided into regions.
Two points belong to the same region if they can be joined by a curve which avoids the
drawing.

Let Reg(G) denote the number of regions in the planar drawing of G.

Theorem 14 (Euler’s Formula). Let G be a connected graph drawn in the plane. Then

|V (G)| − |E(G)|+ Reg(G) = 2.
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Lemma 15. If G is planar, |E(G)| ≥ 2, then |E(G)| ≤ 3|V (G)| − 6. If, further, G contains
no K3 subgraphs, then |E(G)| ≤ 2|V (G)| − 4.

Corollary 16. The graphs K5 and K3,3 are non-planar.

Theorem 17 (The Four Color Theorem). χ(G) ≤ 4 for every planar graph G.

Theorem 18 (Fary). Every planar graph can be drawn in the plane so that the edges are
represented by the straight lines.

Minors. Contracting an edge e with ends u and v means deleting e and identifying u and
v. A graph H is a minor of a graph G if it can be obtained from G by repeatedly deleting
edges and vertices and contracting edges.

Being a minor is a transitive relation, i.e. if H ′ is a minor of H, and H is a minor of G,
then H ′ is a minor of G.

Conjecture 19 (Hadwiger). If G does not have a Kt minor, then χ(G) ≤ t− 1.

A graph G is a subdivision of H if edges of H are replaced in G by internally disjoint
paths. If G is a subdivision of H, then H is a minor of G.

Theorem 20 (Kuratowski). (1) A graph G is planar if and only if G does not contain
either K5 or K3,3 as a minor.

(2) A graph G is planar if and only if G does not contain a subdivision of either K5 or
K3,3 as a subgraph.
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